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This paper describes the coupled electromagnetic-thermal analysis of gradient coils in magnetic resonance imaging. This application
deserves special attention because the eddy-current analysis of gradient coils is usually performed using filamentary and shell
elements, while thermal analysis requires volume elements. The paper aims to present a seamless method to couple the mixed-element
discretizations (1d, 2d and 3d) and to project the outputs of eddy currents simulation into the corresponding thermal sources. Special
attention is devoted to managing of non-simply connected domains within the integral shell elements formulation.
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I. INTRODUCTION

IN magnetic resonance imaging, gradient coils represent one
of the essential components since they are used to spatially

encode the nuclear magnetic resonance signal. They are de-
signed to produce a linear variation of the axial component
of the magnetic field along the Cartesian coordinate in the
imaging region. Different values of the magnetic field deter-
mines different resonance frequency, according to the Larmor
equation [1] ω = γB0, where B0 is the magnetic flux density
and γ the gyromagnetic ratio, with γ/2π = 42.58 MHz/T.
Gradient coils are usually etched on copper sheets with track
width ranging from a few to several tens of millimeters. The
electromagnetic analysis of gradient coils and their coupling
with other conductive structures of MRI scanners is usually
performed with integral formulation with shell elements [2],
[3], to correctly account of the open boundary nature of
the problem. However, when the electromagnetic and thermal
analysis are coupled, some modeling and numerical problems
arise. Firstly, the integral formulation with shell elements is
not suited for closed conductors, like cooling pipes. Secondly
thermal simulations require the use of volume meshes, while
the thermal sources are modeled as filamentary conductors or
shell elements.

The aim of this paper is to present a possible solution for
these two problems, making possible a seamless transition
between the magnetic and thermal domains.

II. INTEGRAL METHOD

Let us consider a homogeneous unbounded 3d domain with
filamentary coils with known currents and a conductive region
V . Assuming magnetic quasi-static approximation, the current
density ~J in V , is div-free, thus ~J(~r) = ∇ × ~T (~r). The
study is restricted to the case when V can be approximated
by 2d curved surfaces S, i.e. the current density lies on these
surfaces. In this case the vector potential can be represented
as the scalar stream function ψ: ~J(~r) = ∇× (~n(~r)ψ(~r)). The
stream function is then expanded by nodal shape functions.

Taking the curl of these function, after some algebra:

~J(~r) =

N∑
k=1

ψk ~fk(~r) (1)

with
~fk = ∇× (λk(~r)~n) =

1

2S
~ek (2)

~ek is the vector corresponding to the edge opposite to node k,
and S is the triangle area. Equation (1) is substituted in the
total electric field equation: ~E(~r) + jω ~A(~r) +∇ϕ(~r) = 0 and
then a Galerkin scheme is used. The final system has the form:

(R+ jωL)ψ = −jωas (3)

Where R is a sparse resistance matrix, L the dense inductance
matrix and as is the contribution of coils with impressed
currents.

A. Treatment of closed surfaces

Particular attention is required when the surface is closed, for
example in case of a torus. Closed surfaces have no boundaries,
thus the total current through any cut is zero. To allow a non-
vanishing net current through the closed surface, a suitable
number of cuts is required, allowing the discontinuity of the
stream function. The nodes along the cut are duplicated as
shown in Fig. 1a. An additional constraint is imposed, in order
to guarantee the current flowing through one side of the cut is
equal to that on other side. Using the superscript α for nodes
at one side of the cut and β for the other side, these constraints
have the form

ψαk+1 − ψαk = ψβk+1 − ψ
β
k (4)

Constraints like (4) collected in the sparse matrix B and
imposed in the system (3) with the help of Lagrange multipliers
λ: [

R+ jωL BT

B 0

] [
ψ
λ

]
=

[
−jωas

0

]
(5)
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Fig. 1: (a) The surface is cut along its length, duplicating the
unknowns along the cut. (b) Automatically generated cut.

Fig. 2: Assembling of mixed-dimensional element matrix.

1) Automatic generation of cuts
The automatic generation of cuts is a non trivial task. In

[4] an algorithm for finding the additional degrees of freedom
in a volume integral formulation of the eddy current problem
in terms of the electric vector potential is presented. The
algorithm used here is its dual, in the sense that it operates
directly on the surface mesh and not on the barycentric.

1) create the barycentric dual mesh B of the original surface
mesh S;

2) form the tree TB;
3) select the cotree CB and recursively remove all the

leaves. The loops left represents the cut of the surface
mesh S.

Fig. 1b shows the cut generated on the surface of a torus.

III. THERMAL COUPLING

The heat conduction equation is discretized using the finite
integration technique, as proposed in [5], [6]:

Mρc
d

dt
T+GTMλGT = p (6)

where G the edge-to-node connectivity matrix, T is the vector
of nodal temperatures, and p is the source term. The thermal
capacity matrix Mρc and the thermal conductance matrix
Mλ encode the material properties and the metric of the
problem. For this reason the coupling with mixed-dimensional
elements, like filamentary coils and shell elements becomes
trivial. Making reference to the four tetrahedra sharing the same
edge in Fig. 2. The entries of the matrix Mλ have the form:

mλ,jk =
∑
r

∫
S̃r
j

λ~wk · ~dS (7)

The summation over the portion of the surface S̃j is the
circuit equivalent of the parallel of thermal conductances. If
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Fig. 3: (a) z-coil geometry with pipes. (b) Temperature after
120 s

TABLE I: Comparison of power loss (in watt) between 2d
axisymmetric formulation and shell elements with automatic
cut generation. Pipes are numbered from bottom to top.

pipe 1 pipe 2 pipe 3 pipe 4 pipe 5

2d axisymm. 7.04 18.22 13.18 4.22 2.64
shell elem. 6.80 17.60 12.65 3.95 2.22

triangular shell elements are located in between the tetrahedra,
their contribution can be calculated independently, and then
added, i.e. connected in parallel, to the corresponding elements
(7). A similar procedure can be applied for thermal capacity
matrix Mρc.

IV. EXAMPLE

The proposed techniques are tested in the analysis of a split
z-coil with cooling pipes. Eddy currents are calculated in the
cooling pipes due to a source current of 100 A at 100 Hz. The
output is provided as source of the thermal analysis. Table I
shows the comparison between a 2d axisymmetric code and the
proposed shell elements with automatic cut generation. Fig. 3b
shows the temperature map after a heating phase of 120 s.

V. CONCLUSIONS

The proposed method allows the automatic coupling between
eddy currents and thermal solvers with mixed-dimensional
elements. In the full paper the method will be detailed as well
as a more accurate analysis on the accuracy will be provided.
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